IBS-KAIST, 생체 내부 미세 구조 관찰 기법 개발
살아있는 제브라피시 생체 내부 근육섬유까지 관찰 성공

IBS 분자 분광학 및 동력학 연구단 연구진이 개발한 공간 게이팅 현미경의 모습. <사진=IBS 제공>
IBS 분자 분광학 및 동력학 연구단 연구진이 개발한 공간 게이팅 현미경의 모습. <사진=IBS 제공>
살아있는 생명체 내부 조직을 꿰뚫어보는 새로운 현미경이 나왔다.

IBS(기초과학연구원·원장 노도영)는 최원식 분자 분광학 및 동력학 연구단 박사팀과 장무석 KAIST 바이오 및 뇌공학과 교수팀이 초음파를 이용해 기존 현미경으로 볼 수 없었던 생체 내부 미세 구조 관찰 기법을 개발했다고 19일 밝혔다.

빛이 생체 조직을 투과할 때 직진광과 산란광이라는 두 종류의 빛이 생긴다. 직진광은 말 그대로 생체 조직의 영향없이 직진하는 빛이며, 산란광은 생체 조직내 세포나 세포 내 구조의 영향에 의해 진행 방향이 무작위로 굴절된 빛이다. 

광학 현미경은 작은 미세구조를 관찰할 수 있도록 돕지만 생체 조직의 깊은 곳을 관찰할 때 산란광이 강해져 이미지 정보가 흐려진다는 단점이 있었다. 안개속을 볼 수 없듯 생체 조직의 수많은 세포와 구조들이 빛을 산란시켜 이미지를 흐리게 만들었다.

반면 초음파 영상은 태아를 감별할 수 있을 정도로 생체 내부 깊은 곳까지 이미징할 수 있지만 해상도가 낮아 미세한 구조를 볼 수없다는 단점이 있다.

연구진은 광학 현미경과 초음파 영상의 장점을 결합해 생체 내부 깊은 곳을 높은 해상도로 관찰할 수 있는 '초음파 결합 광학 현미경'을 개발했다. 이 현미경은 생체 조직 내부를 잘 침투하는 초음파를 집속시킨 후, 초음파의 초점을 지나는 빛만 측정하는 방식으로 산란광의 세기를 크게 감쇄시킨다. 초음파가 광학현미경에게 관찰 경로를 알려주는 일종의 네비게이션 역할을 하는 셈이다.

초음파는 생체 조직을 응축, 팽창시켜 굴절률을 변조하는 방식으로 빛의 진행에 영향을 준다. 연구진은 이런 초음파의 특성을 응용해 초음파의 초점을 통과하는 빛만을 선택적으로 측정하는 기술을 개발하고, 이 기술을 공간 게이팅(space-gating)이라 명명했다. 

연구관계자에 따르면 초음파는 생체 내부의 '빛 거름망' 역할을 하며 무작위로 산란되던 빛을 차폐한다. 공간 게이팅 기술을 통해 연구진은 산란광을 100배 이상 감쇄시키며 생체 조직 내에서 광학 이미지가 흐려지는 문제를 극복할 수 있었다.

장무석 KAIST 교수는 "촘촘한 거름망을 사용하면 더 고운 가루만 남는 것처럼 초음파의 초점을 작게 할수록 산란광을 더 많이 감쇄시킬 수 있다"며 "향후 산란광을 1000~1만 배 수준까지 감쇄시켜 더 선명한 이미지를 얻게 될 것으로 기대한다"고 말했다.

연구진은 개발한 현미경을 이용해 별도의 형광 표지 없이 부화한지 30일 된 성체 제브라피시의 척추 안쪽 근육 조직 이미지를 얻는데 성공했다. 연구진은 인체 조직에도 사용할 수 있는 공간 게이팅 기술을 구현해나갈 계획이다. 

최원식 부연구단장은 "초음파 결합 광학 현미경은 기존 광학 현미경의 얕은 이미징 깊이 문제를 해결하는 획기적인 기술"이라며 "공간 게이팅 기술을 더욱 발전시켜 빛의 산란 현상을 이해하고, 의생명 광학 기술 분야 활용 범위를 넓혀나갈 것"이라고 말했다.
  
연구결과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)에 지난 5일자 온라인 판에 게재됐다.

성체 제브라피시 내 근육 관찰 결과 이미지<사진=IBS 제공>
성체 제브라피시 내 근육 관찰 결과 이미지<사진=IBS 제공>
저작권자 © 헬로디디 무단전재 및 재배포 금지